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CT Preface [draft]

The term Statistical Mechanics was coined by Gibbs, who at the same time created the

concept of ensemble [1]. Gibbs simply assumed, on physical grounds, that macroscopic

quantities are obtained as averages over a myriad of microstates (ensemble), in a way

compatible with macroscopic constraints. The methods was justi�ed by its physically

satisfactory results. Boltzmann tried to justi�ed the ensemble theory, introducing the

so called ergodic hypothesis: what we observe macroscopically is a time average of a

physical quantity over a �long�period of time. This time average is identical with the

statistical average over an ensemble. This statement is based on the strong assumption

that the orbit of a system comes arbitrarily close to any point in phase space, during a

time equivalent to the one used to calculate the time average. Boltzmann also pursued

a di¤erent route introducing his transport equation (Boltzmann equation), in his for-

mulation of the kinetic theory of gases. Boltzmann equation, to the author�s knowledge,

is one of the �rst Master Equation ever written in Physics. Di¤erently from dynamical

equations of mechanics, master equations are intrinsically irreversible, and remarkably,
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PREFACE � MANUSCRIPT

they allow us to calculate typical relaxation times. In writing his equation, Boltzmann

assumed that velocities of colliding molecules are uncorrelated and independent of po-

sition. This hypothesis is known with the name of molecular chaos (Stosszahlansatz),

and it allowed Boltzmann to demonstrate his famous H-theorem, in an attempt to derive

the Second Law of thermodynamics from kinetic theory[2]. Objections to Boltzmann�s

approach pointed to the fact that one cannot deduce irreversibility from time-symmetric

dynamic equations. Boltzmann then advanced a probabilistic interpretation of his re-

sults, arguing that they can be understood in terms of most probable distributions for

systems with macroscopically large number of particles. On the other hand, the Boltz-

mann equation has been largely successful in describing transport properties of matter,

even in semi-classical situations. In spite of the original opposition, the derivation of

the kinetic theory from classical dynamics can be considered satisfactory.

After the introduction of Quantum Mechanics, Pauli followed the Boltzmann

tradition to pursue the same program from the quantum mechanical point of view [3].

This procedure led him to formulate the basis of quantum master equations, in an at-

tempt to establish the quantum analog of the H-theorem. Irreversibility is introduced

through the random phase hypothesis, which is the quantum counterpart of Boltzmann

molecular chaos assumption [4]. In the present book, we follow this approach, with the

understanding of being more comprehensive and satisfactory in deriving equilibrium

statistical mechanics. On physical grounds, this method allows, in principle, for calcu-
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lation of relaxation times, being closer to experimental setups than other proposals (as

for example, the ergodic hypothesis).

Our formulation of quantum statistical mechanics is based entirely on the

Density Operator formalism, which includes both, quantum and thermal �uctuations1.

The Density Operator describes the general state of a quantum system, for equilib-

rium or nonequilibrium phenomena, and embodies the probabilistic nature of quantum

systems at �nite temperature. We will show, with this formalism at hand, that a sat-

isfactory derivation of Statistical Mechanics is ful�lled. Important requirements that a

meaningful theory should implement are:

i) when a physical system is prepared in an arbitrary initial state, the Density

Operator should described its relaxation to equilibrium;

ii) the method should provide a quantitative estimation of relaxation times;

iii) at asymptotically long times (greater than typical relaxation times), the Density

Operator should de�ne the equilibrium ensembles which allow for calculation of

thermodynamic properties;

iv) at equilibrium, the limit of low temperatures and high densities should reduce the

formalism to ordinary Quantum Mechanics;

1That explains the word "unifying" in the book title.
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v) in contrast, the limit of high temperatures and low densities should recover results

from classical statistical mechanics.

The above program will be developed in the various chapters of the present

book. The presentation is divided in two parts. The basic concepts are discussed in Part

I:Foundations, particularly important, the relaxation to equilibrium and the meaning of

equilibrium itself. Afterwards, the equilibrium ensembles are de�ned and applied to a

number of elementary systems. Interrelations among the ensembles are presented, along

with connections with macroscopic thermodynamics. Part I also includes quantum

statistics and treats ideal quantum gases. Special attention is given to the Bose-Einstein

condensation. In Part II:Applications, we study interacting quantum systems, including

interesting phenomena such as super�uidity and superconductivity.

viii
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CN Chapter 1

CT Classical or Quantum

Probabilities. Or both?

The description of nature through quantum theory is intrinsically probabilistic, and

statistical methods are developed in order to get information of physical observables.

This distinctive feature has its roots in the probabilistic interpretation of the wave func-

tion, in conjunction with the Uncertainty Principle. As discussed in standard textbooks,

quantum probabilities embody the dual nature of matter, reproducing phenomena such

as interference and di¤raction. This statistical representation, even for a one particle

system, requires an ensemble of similarly prepared systems, in order to generate a set

of well de�ned probabilities for all quantities. The ensemble is a conceptual set of an

�in�nite�number of replicas of the same system that do not coexist in space or time.
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When all systems of the ensemble are represented by the same wave function or state

vector j i, we say that we have prepared a pure state. In Statistical Mechanics, j i

represents a possible microstate of the system. Physical predictions of an observable

quantity A are given in terms of averages or mean values of the type:

hAi = h jAj i ; (1.1)

where the bracket is calculated following well established quantum rules. In turn,

statistical �uctuations of quantum origin are obtained through:



A2
�
� hAi2 =



 
��(A�hAi)2�� � ; (1.2)

where we have assumed that the state  is normalized, i:e: <  j >= 1. The time

evolution of this microstate is dictated by the Schrödinger equation, as long as no

measurement is made on the system. We will not pursue here a thorough discussion

on the fundamental concepts of Quantum Mechanics, and will assume that the reader

has the proper background to follow this set of lectures [1, 2]. According to Quantum

Mechanics, a pure state is the maximal information we can have of a quantum system,

and represents an exception rather than the rule. In most situations, we do not know

the wave function with certainty. A typical example is given by a system of coordinate

x which is coupled to another system of coordinate y (the latter may be a thermal

bath that keeps the system at a constant temperature). In general, we cannot assign

a wave function to our system x, which is a part of the whole system (x;y). In
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this case, we say that the system x is in a mixed state and we have to look for a

more general mathematical object to describe this situation. This lack of information

closely resembles the classical statistical problem. In fact, in many instances this case

is denominated as incoherent mixture, to mean the lack of quantum coherence and the

absence of interference e¤ects. As will be discussed later on, quantum and thermal

�uctuations compete in this scenario as function of temperature. Quantum coherence

is realized at low temperatures, and asymptotically at zero temperature the system is

driven exclusively by quantum�uctuations. As long as the temperature is increased, the

system develops thermal �uctuations, which eventually dominate the statistics, leading

to decoherence of quantum e¤ects (classical statistics). The description of the general

ensemble, encompassing all cases, is attained quite naturally employing the so called

state operator � (or density operator), which is a generalization of the wave function

concept. The operator � is the relevant quantity to construct quantum statistical

mechanics. The name density is reminiscent of the classical function �(q; p) that yields

the density of points in phase space to perform classical statistics. A single point in

phase space represents one of the systems of the ensemble. An important task to be

accomplished is to relate the quantum density operator � with the classical function

�(q; p). In the next section, we develop the basis of the mathematical formalism.

5
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A 1.1 Ensembles and Density Operator

We begin by de�ning the di¤erent ensembles we encounter to describe a physical system

[3].

De�nition 1 Pure Ensemble. It is a collection or set of identical physical systems,

such that all members of the ensemble (systems) are characterized by the same state

vector or ket j i. This is the usual case we encounter in standard quantum mechanics

textbooks, when the state of a system is represented by a single wave function. This

ensemble represents a microstate.

Calculation of averages and standard deviations for the ensemble are given

by equations (1.1) and (1.2). This pure state j i may be an eigenstate of a particular

physical observable, or may be a linear superposition of eigenstates of an arbitrary

operator.

De�nition 2 Mixed ensemble. The wave function is not known with certainty, and

we have several possibilities that we write as
n��� (1)E ; ��� (2)E ::: ��� (i)E :::o. This collec-

tion may be �nite or in�nite. A fraction of the members of the ensemble, with relative

population wi, is assigned to the ket
��� (i)E. Normalization requires that
X
i

wi = 1: (1.3)

The weights fwig are positive (or zero) real numbers. We say that this ensemble repre-

sents a macrostate of the system.

6
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The states vectors
n��� (1)E ; ��� (2)E ::: ��� (i)E :::o are normalized but not neces-

sarily orthogonal, and the number of such states may be greater than the dimension

of the linear space. The numbers fwig cannot be interpreted as ordinary probabilities,

since the quantum states
n��� (1)E ; ��� (2)E ::: ��� (i)E :::o are not �mutually exclusive�. This

has to be understood in the sense that the overlap between two states of the collection

does not vanish in general, i.e. D
 (i)j (j)

E
6= 0 (1.4)

in the general case. Now, we have to prescribe the calculation of averages for the mixed

ensemble. Let A be a physical observable. We denote by [:::] the average for the

ensemble, to distinguish from h:::i used for the pure quantum case.

De�nition 3 Average or Mean Value for the mixed ensemble.

[A] �
X
i

wi

D
 (i) jAj (i)

E
: (1.5)

In the above de�nition, we see that the ordinary quantum average
D
 (i) jAj (i)

E
for

the state  (i) is weighed by its relative population wi, so the average [A] has a mixed

quantum and statistical nature. We rewrite the de�nition (1.5) using a general basis of

7
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states fjnig, which is orthonormal and complete:

[A] =
X
i

wi
X
n;n0

<  (i)jn > < njAjn0 > < n0j (i) >

=
X
n;n0

 X
i

wi < n0j (i) ><  (i)jn >
!
< njAjn0 > : (1.6)

The expression above suggests the following de�nition:

De�nition 4 State Operator or Density Operator, �

� �
X
i

wi j (i) ><  (i)j : (1.7)

Its matrix elements are given by:

hn0 j�jni =
X
i

wi < n0j (i) ><  (i)jn > ;

and the mean value can be written as a trace:

[A] =
X
n;n0

hn0 j�jni hn jAjn0i = Tr (�A) : (1.8)

From the de�nition, we get some immediate properties:

i) � is an Hermitian operator:

�y =
X
i

w�i

�
j (i) ><  (i)j

�y
=
X
i

wi j (i) ><  (i)j = � ;

because the fwig are real numbers. The eigenvalues of � are then real. We will

show that they are all positive;

8
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ii) the density operator is normalized in the sense:

Tr � =
X
n

X
i

wi < n j (i) ><  (i)j n >=
X
i

wi
X
n

<  (i)j n >< n j (i) >=

=
X
i

wi <  (i)j (i) >=
X
i

wi = 1 ; (1.9)

since the states  (i) are normalized. This condition reduces to the fact that the

unit operator 1 has mean value equal to 1;

iii) consider an observable A. The operator AyA is said to be positive de�nite (non

negative). That means that its average is positive or zero:

�
AyA

�
=
X
i

wi

D
 (i)

��AyA
�� (i)E =X

i

wi


'(i)j'(i)

�
;

where j'(i) >= Aj (i) >. Since the metric is positive, we have


'(i)j'(i)

�
= 0,

resulting
�
AyA

�
= 0. Since A is an observable, it is Hermitian, Ay= A, with real

eigenvalues. Consider the basis that leaves A in diagonal form, Amn = An�mn

and calculate
�
AyA

�
:

0 5
�
AyA

�
= Tr (�AA) =

X
k;m;n

�nmAmkAkn =
X
n

�nnA
2
n ;

and since A is arbitrary, we obtain that �nn = 0. Result: any diagonal element

of �, for an arbitrary representation, is non negative. In particular, if we choose

the representation where the operator � is diagonal, �mn = �n�mn, we obtain that

the eigenvalues are non negative, �n = 0, with
P

n �n = 1;

9
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iv) using the same representation, we obtain

Tr
�
�2
�
=
X
n

�2n 5
 X

n

�n

!2
= (Tr �)2 = 1 ;

that is Tr (�2) 5 1, and since the trace is invariant, this result is valid in any

representation;

v) the pure ensemble can be considered as a limit case of the mixed ensemble, when

only one of the weighs is di¤erent from zero, i.e.

wi =

8>><>>:
1; for i = j;

0; for i 6= j :

and � = j (j) ><  (j)j. In the following, we will review some properties of the

pure ensemble. �

A 1.2 Pure versus mixed ensembles

For pure states, the density operator has the simple form:

� = j ><  j ;

from where we get the properties:

a) idempotence of �,

�2 = (j ><  j) (j ><  j ) = j ><  j ><  j = j ><  j = � ;

10
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since <  j >= 1. This relation can be factorized:

� (�� 1) = 0 : (1.10)

b) the equation (1.10) is also satis�ed by its eigenvalues:

�n (�n � 1) = 0 ;

with solutions �n = 0; 1. Due to normalization,
P

n �n = 1, it follows that only

one of the eigenvalues is 1, and all the other are zero. In the diagonal form, the

density matrix is written as

�
:
=

0BBBBBBBBBBBBBBBBBBBBBB@

0 0 : : : 0 0

0 ::: ::: 0

: 0 :

: 1 :

: 0 :

0 ::: ::: 0

0 0 : : : 0 0

1CCCCCCCCCCCCCCCCCCCCCCA

:

c) due to the idempotent property, we get

Tr
�
�2
�
= Tr (�) = 1 : (1.11)

Relation (1.11) can be considered as a necessary and su¢ cient condition for an

ensemble to be pure.
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